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Abstract

This is the final report to AFOSR and AFRL/IFEC for the project Qualitative De-
tection of Independently Moving Targets in MPEG Video within the Compressed Domain.
This project focuses on developing theory and techniques for large scale surveillance
video data summarization and unsupervised segmentation of video streams regard-
ing whether there is a presence of independent motion in the streams. We propose a
holistic, in-compression approach to efficient video prostanding. By efficient, we mean
that the processing speed is close to or even faster than real-time in “normal” platforms
(we do not assume using special hardware or any parallel machines) while still main-
taining comparable quality with state-of-the-art methods. By prostanding, we mean
to aim at those tasks that are between the traditional video processing and traditional
video understanding. We target surveillance applications. Specifically, we focus on
two prostanding tasks: independent motion detection and frame alignment. Solutions
developed in the two prostanding tasks provide complementary roles in facilitating
efficient browsing of a large collection of surveillance video: the independent motion
detection tool allows identifying the shot with the “foreground” target motion with-
out waiting for playing the whole collection of video before identifying the shots; the
frame alignment tool allows accessing of the “background” scene immediately, through
applications such as mosaicking, without waiting for playing the whole collection of
video. For the independent motion detection task, we have developed the theory and
the technique called LSCA. For the frame alignment task, we have developed the the-
ory and the technique called ICM. Both techniques are representatives of the holistic,
in-compression approach. Theoretical and experimental analyses show that both meth-
ods work robustly in solving their problems, and thus demonstrate and validate the
holistic, in-compression approach in solving for video prostanding problems.



1 Introduction

This project focuses on developing theory and techniques for large scale surveillance
video data summarization and unsupervised segmentation of video streams regarding
whether there is a presence of independent motion in the streams. Since processing
time is critical in summarizing and/or segmenting large scale surveillance video, the
developed theory and techniques must provide efficient processing. Consequently, we
focus on developing the theory and related methods aiming at efficient processing of
MPEG video stream data. By efficient, we mean that the processing speed is close to
or even faster than real-time in “normal” platforms (we do not assume using special
hardware or any parallel machines) while still maintaining comparable quality with
the state-of-the-art methods. Video prostanding incorporates research activities related
to computer vision and image processing including video processing. We propose the
concept of video prostanding to purposively focus on the activities that are between the
typical video processing which aims at low-level processing of the video signals (such as
compression, noise filtering, and frame based camera stabilization) and the typical video
understanding which aims at semantic interpretation and understanding (such as scene
recognition and activity analysis and interpretation).

We target surveillance applications. Based on the ultimate goal of efficient video
prostanding, we propose the holistic, in-compression approach, and we demonstrate
the approach by focusing on two video prostanding tasks: (1) independent motion de-
tection; and (2) frame alignment. For the independent motion detection task, we have
developed the theory and the technique called LSCA. For the frame alignment task, we
have developed the theory and the technique called ICM. Solutions developed in the
two prostanding tasks provide complementary roles in facilitating efficient browsing of
a large collection of surveillance video: the independent motion detection tool allows
identifying the shot with the “foreground” target motion without waiting for playing
the whole collection of the video before identifying the shots; the frame alignment tool
allows accessing of the “background” scene immediately, through applications such as
mosaicking, without waiting for playing the whole collection of the video. Examples
of the video prostanding applications are ubiquitous ranging from economic develop-
ment to homeland security in which efficient prostanding of video streams is highly
desirable.

This report is organized as follows. After this Introduction section, we give the
motivation of this research as well as the related work in the literature in the next sec-
tion. We then introduce the LSCA theory and the method and the ICM theory and the
method in the following two sections, respectively. We then present extensive exper-
imental data to demonstrate the promise and effectiveness of these methods. Finally,
we conclude this report.

2 Motivations and Related Work

In motion detection, when the camera is still, the problem is relatively easy [19]. How-
ever, when a surveillance video is taken from a camera that is also in motion, every
pixel in a frame may contain motion. For those background pixels, the motion reflected
in the image domain corresponds to the 3D camera motion. On the other hand, for
those pixels corresponding to independently moving objects in the frame, their motion



corresponds to the combination of the 3D camera motion and their own independent
motion in the 3D space. In this case, simple frame based differencing does not work
[19], and certain sophisticated techniques must be applied to separate the independent
motion from the camera motion, which is also called the background motion. This
problem becomes even more complicated when there is 3D motion parallax involved.
In this case, a 3D motion model must be applied in order to robustly and accurately
separate the independent motion from the camera motion. Therefore, the problem of
detection of independently moving objects here is reduced to the problem of indepen-
dent motion detection. This is one of the problems we address in this project.

There are two scenarios related to independent motion detection. Given a video
stream or an image sequence, one scenario refers to the detection in which a tempo-
ral segmentation is conducted into those subsequences (called shots) that contain the
scene in which one or more independently moving objects are present, in addition to
a spatial segmentation and delineation of each of the independently moving objects in
each of the frames of these shots. The other scenario, on the other hand, refers to the
detection in which only the temporal segmentation is conducted to return those shots
that contain independent motion; no spatial segmentation is performed to identify the
independently moving objects in each frame. The focus of this project is primarily in
the latter approach.

Motion analysis has been a focused topic in computer vision and image under-
standing research for many years [46, 18, 15, 12, 30]. Due to the difficult nature of the
problems in this topic, it is still considered as an open area and many research efforts
are still being developed in this topic [10, 11]. Independent motion analysis, on the
other hand, deals with multiple motion components simultaneously, and therefore, is
presumably more challenging.

The earliest work in independent motion detection may be dated back to the early
80’s. Jain [22] proposed a solution assuming that the camera was under a translation.
Adiv [1] assumed the availability of optical flow and used the flow to group regions
based on the rigidity constraint over two frames. Nelson [33] proposed two methods
based on velocity constraints to detect independently moving objects. Thompson et al
[44] used a similar approach based on the rigidity constraint. Bouthemy and Francois
[9] treated the problem of independent motion detection as a statistical regularization
problem and attempted to use the Markov Random Field model to solve for the prob-
lem. Ayer et al [7] used robust statistical regression techniques to detect independent
motion. Smith and Brady [42] used geometric constraints for independent motion seg-
mentation. Sharma and Aloimonos [39] provided a solution to this problem based on
the normal flow field — the spatiotemporal derivatives of the image intensity func-
tion, as opposed to the typical optical flow field. Irani and Anandan [19] proposed a
three-frames constraint based on a general 3D motion parallax model to detect inde-
pendent motion. Argyros et al [5, 3, 4, 6] and Lourakis et al [27] used stereo camera
streams to detect independent motion. Their techniques were essentially the combina-
tion of applying the normal flow field to the stereo streams and using robust statistical
regression. Fejes and Davis [13] developed a low-dimensional, projection-based algo-
rithm to separate independent motion using the epipolar structure of rigid 3D motion
flow fields. Torr [45] proposed a method based on model selection and segmentation
for separating multiple 3D motion components. Pless et al [35] provided a solution
to the problem in a special case in which the scene may be approximated as a plane,




which is valid for typical aerial surveillance. Their method is based on spatiotempo-
ral intensity gradient measurements to directly compute an exact background motion
model, and then the independent motion is detected based on the constraint violation
for the mosaics developed over many frames. Sawhney et al [38] proposed a method
that simultaneously exploits both constraints of epipolar and shape constancy over
multiple frames. This method is based on the previous work on plane-plus-parallax
decomposition [24, 37, 40], and thus requires explicitly estimating the epipolar and the
homography between a pair of frames.

Most of the existing techniques for independent motion detection in the literature
require spatial segmentation (i.e., identification) of the independently moving objects
in the frames or images. Due to this fact, very few of them can afford fast detection
(such as real time or even faster than real time detection), as their solutions to temporal
independent motion detection depend on the spatial independent motion segmenta-
tions. While these approaches are useful in general, due to the specific applications that
have motivated this project, in order to deliver a fast detection, we are only concerned
with detecting those video shots that contain independent motion, without specifically
identifying the independently moving objects in the frames. We argue that it is not nec-
essary to identify the moving objects in the image frames in the applications that we are
concerned with. This is based on the following two reasons. (i) In many applications,
the time issue, i.e., the detection speed, is always an important concern. Obviously the
spatial domain identification requires more processing time. (ii) It is not necessary to
take the spatial domain identification approaches in many applications. Even if the in-
dependently moving objects are all segmented and identified in each frame, given the
current status of computer vision and artificial intelligence in general, it is not possible
to have a fully automated capability to interpret whether the segmented and identified
independent motion in the frames indicates any specific significance without interac-
tion with human expertise. Therefore, these detected shots must be sent to the users for
further analysis anyway, regardless of whether or not the independently moving objects
are segmented and identified in each frames in these shots.

The other observation is that in the literature, most of the existing techniques for in-
dependent motion detection are based on image sequences, as opposed to compressed
video streams. In other words, given a video, such as a surveillance video, these meth-
ods require that the video must be first fully decompressed to recover an image se-
quence before these methods can be applied. This restriction (or assumption) signifi-
cantly hinders these techniques from practical applications, as in today’s world, infor-
mation volume grows explosively, and all the video sequences are archived in com-
pressed forms. This is particularly true in the surveillance applications this project is
concerned with, in which the data volume is massive and they must be archived in a
compressed form, such as MPEG.

Based on these considerations, we have developed a holistic, in-compression ap-
proach to solving for the problem of efficient independent motion detection directly from
the compressed surveillance video streams. This capability allows two possible appli-
cation scenarios for this technology. The first is to equip the sensors with this detection
algorithm for real-time data scanning while the sensors are in surveillance. The second
is to mine (or scan) an archived surveillance video database in which all the video data
are stored in a compressed format to retrieve the shots containing independent motion.

While independent motion detection addresses detecting the “foreground” targetin




the surveillance video analysis, frame alignment facilitates applications such as video
mosaicking to allow immediate access to the “background” scene. We primarily apply
the frame alignment approach to video mosaicking in this project.

General methods of aligning frames starting from a sequence’s pixels are quite ma-
ture, but more relevant to the discussion here are those methods that do processing
in the compressed domain. Jones et at. [23] align video frames by fitting the received
MPEG motion vectors to a three-parameter model, where the three parameters repre-
sent horizontal displacement, vertical displacement, and zoom; the parameters are es-
timated by averaging the received MPEG motion vectors. Milanese et al. [32] also use
a three-parameter model to describe global camera motion, where the three parame-
ters are estimated by minimizing a least-squares criterion. To help reduce the effect of
motion-vector inaccuracies, the authors do two pre-processing steps where they apply
spatial and temporal median filters to the motion vectors, followed by removing incon-
sistent motion vectors from the least-squares criterion. Pilu [34] uses a six-parameter
affine model to describe the global motion between frames. A least-squares solution
is found to match the received motion vectors, where similar to Milanese et al., some
pre-processing is performed to reduce the impact of inaccurate motion vectors: the
gradient of the image is thresholded to remove smooth image regions from considera-
tion; the result is then median filtered, followed by a final linear smoothing. Meng and
Chang [31] perform an affine fit to MPEG motion vectors. Rather than performing a
pre-processing step to eliminate outlier motion vectors, the authors first fit all motion
vectors to the affine model; motion vectors that have a very poor fit to the resulting
model are subsequently removed, followed by a re-calculation of the model parame-
ters. The process is repeated iteratively to refine the final results.

There are several limitations of the methods discussed above. Models that make
use of only three parameters [23, 32] may work well for some problems, but are clearly
inadequate for modeling motion more complex than translation and zoom. Pilu’s
method [34] uses an adequate six-parameter model, but the thresholding procedure
for discarding motion vectors can be problematic—a threshold that works well for one
sequence may be unsuitable for a different sequence. Meng and Chang’s work [31]
also uses adequate model complexity, but as discussed by the authors of the RANSAC
algorithm [14], the general procedure of iterative model fitting followed by outlier re-
jection can lead to incorrect fits. There is also a fundamental problem with algorithms
that use simple averaging or least-squares for fitting motion vectors to a global mo-
tion model: large outliers can severely corrupt the final result, due to the unnecessarily
high quadratic penalty in a least-squares formulation. The frame-alignment algorithm
presented in this report addresses this very topic.

3 LSCA Approach to Independent Motion Detection

We propose a holistic, in-compression approach to solving for the unsupervised seg-
mentation problem for the independent motion detection based on the linear system
consistency analysis theory, and thus, we call this approach as LSCA. Since the LSCA
approach only focuses on what exactly is necessary to compute, it saves the computa-
tion to a minimum and achieves the efficacy to the maximum. Consequently, LSCA
delivers an efficient solution to the independent motion detection task. In this section,
we first describe the LSCA theory. Then we give the LECA method. Finally, we give
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the derivation of the theoretic bound for detecting independent motion based on the
LSCA method.

3.1 Linear System Consistency Analysis

We use a 3D to 2D affine model to approximate the video camera imaging system. For
a typical surveillance video, this affine model is sufficiently accurate for the mapping
from 3D scenes to 2D images. Our experiments also show that this model even works
well for some of the non-surveillance video such as movies (see Fig. 6 for an example).

Given a 3D point P and its corresponding 2D point p, a 3D to 2D affine transform
is a linear transform, and is defined as [21]:

p=AP+t Q)

where A is a 2 by 3 matrix with six independent parameters, and ¢ is a 2D vector with
another two independent parameters.

Assume that the camera motion between two arbitrary frames is an arbitrary 3D
motion, which can be represented as a 3 by 3 rotation matrix R with three independent
parameters, and a 3D translation vector T' with another three independent parameters.

P'=RP+T @)

where P’ is the same point of P after the camera motion in the 3D space. The displace-
ment of the point P in the 3D space with respect to time after the motion is:

P=P -P=(R-I)P+T (3)
where I is the identity matrix. From Eq. 1 and Eq. 3, it is clear:
- p=AP=A(R-I)P + AT 4

Let P = (X,Y,Z)T and p = (z,y)T. Given each image point p, Egs. 4 and 1 give
rise to four independent equations. Eliminating P, we obtain a linear constraint for
each image point p in a video frame:

T+0y+ar+Py+y=0 ®)

where the variables «, 8, 7, and 8 are functions of the motion parameters R, T between
the two frames, and the sensor parameters A, t with the following relationship:
o = Tlmis) ©
g9(mi;)
where m;; are the motion parameters (the elements of R and T') and/or the sensor
parameters (the elements of A and t), and f, g are both quadratic functions. Similar
expressions exist for 3,6, .

When a pair of neighboring frames is determined, the motion parameters R, T' are
constants for all the image points in the frames. We first assume that the sensor param-
eters A, t are always constants. We will relax this assumption later. Hence, the vari-
ables @, 3,7, and 8 are independent of the image coordinates z, y, and their derivatives
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&,9 in Eq. 5. This indicates that for each point in a frame, there is a linear constraint
represented in Eq. 5. ‘

Now assume that we have n points identified in a frame, and that we know each
point’s displacement (z,9)7 to the next frame. Since each point contributes one linear
constraint of Eq. 5, we have a linear system consisting of these n points:

Dé=b @)

1 1 oy 1
D = ven wes é = b =
Yn Tn Yn 1 p =
Given such a linear system, if we know that all the n points are with the camera
motion, i.e., there is no independent motion with any of these n points, then all the n
points have the same motion parameters. Since the sensor parameters are always the
same for all the points, the n points will have the same values ¢, 3,6,y based on Eq. 6.
Therefore, the linear system Eq. 7 is consistent, i.e., there are solutions to this system.
This has proven the following theorem:

™R

Theorem 3.1 Given n points represented in the linear system of Eq. 7, if there is no indepen-
dent motion with any of these points, then the linear system is consistent..

This means that the consistency of the linear system is the necessary condition of
no independent motion in the n points. In general, given n > 4, the rank of D is 4.
Consequently, in general the consistency of Eq. 7 means there is a unique solution to
this linear system.

From Theorem 3.1, it is clear that if the linear system Eq. 7 is not consistent, there
must be independent motion involved. However, the linear consistency of the sys-
tem Eq. 7 is not the sufficient condition for detecting any independent motion of the n
points. This is due to the fact that Eq. 6 is not a one to one mapping between a specific
vector of ¢ and a specific set of motion parameters. Given the same solution § for all
the n points, it is possible to have different values of motion parameters that satisfy the
same mapping of Eq. 6. Fig. 1 illustrates one example of this situation. In this example,
the camera moves from the position O at time ¢, to the position O’ at time t; with a
different orientation. If there is a 3D point @ which does not involve any independent
motion between ¢; and #,, then the corresponding images of Q at these two instants
are p and g, respectively. Thus, the displacement between the two frames for Q in the
image domain is g — p. Now as another scenario, if there is another 3D point P located
somewhere in the ray between @ and O at time ¢, then the image of P is the same p as
that of Q. When the camera moves from O to O’, P undergoes an independent motion
to Q. Consequently, the combined motion of P results in the same displacement vector
g — p in the image domain. This means that given the same displacement vectors, to-
gether with the same points in one frame, subsequently resulting in the same £ vector
from Eq. 7, we cannot tell whether there is independent motion involved. Hence, we
have disproved that the linear system consistency is the sufficient condition for detect-
ing independent motion.

Though the consistency of the linear system Eq. 7 is only the necessary condition
and not the sufficient condition to determine whether there is any independent motion
involved in the n point set, we can still use it to detect the independent motion. In
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Camera Motion

Figure 1: An example to show that the same displacement, which generates the same £
vector, is not sufficient to tell whether there is an independent motion.

fact, if the linear system is not consistent, we can immediately conclude that there is
independent motion involved between the two frames. On the other hand, if the lin-
ear system is consistent, we may presume that there is no independent motion. This
presumption is subject to a potential false negative, as the linear consistency is not the
sufficient condition for the independent motion detection. Similarly, if a large compu-
tation noise occurs (e.g., the image point localization errors, the displacement vector
estimation errors), a consistent linear system could turn out to be inconsistent. In this
case, a false positive would be generated. In general, a few false positives are allowed
while the number of false negatives must be guaranteed to a minimum.

Now the question is, given n points in two frames, how to determine whether the
linear system Eq. 7 is consistent. By linear algebra theory [25], Eq. 7 is consistent iff

Rank(D) = Rank(Db) 8

where Db is the augmented matrix of Eq. 7. In order to determine the rank of the above
two matrices, we apply singular value decomposition (SVD) to both D and Db, and

define
R= Omin (D )
Omin(DDb)

where oin (D) and omin (Db) are the smallest singular values of D and Db, respec-
tively, assuming Eq. 7 has unique solution; multiple solution cases may be handled
similarly. Consequently, Eq. 7 is consistent iff R is above a threshold, following the
theory and practice of [49, 50, 48]. Note that from the definition of Eq.9, R > 1.

There are two comments that are worth mentioning regarding the computation of
the linear consistency of Eq. 7.

©)

e The transform Eq. 1 does not assume the calibration of the camera, allowing the
use of uncalibrated image coordinates z;,y; in the linear system Eq. 7, and em-
powering this approach for practical applications, for in typical video data the
sensor parameters are unknown.

e The coefficients of the linear system Eq. 7 are all linear terms of z;, y;, %, %;- This
eliminates the popular but notorious problem of high condition numbers in linear



systems typically existing in many image understanding solutions [17] that makes
the solutions unstable. This property indicates that the R statistic defined in Eq. 9
is stable, which is confirmed by the experiments.

3.2 LSCA Method

Two potential problems are revealed in the linear system Eq. 7. Eq. 7 assumes the avail-
ability of displacement vectors (z,9)7 for a group of image feature points in a frame. In
order to obtain the displacement vectors, a correspondence algorithm or an optical flow
algorithm must be applied, such as [28, 41, 51]. Since the correspondence or the flow
computation problem [2] is an ill-posed problem in computer vision and image under-
standing research, false positives and false negatives in terms of the correspondence
errors between two frames are inevitable, which will be propagated to false positives
and false negatives in independent motion detection. Consequently, it is desirable to
have a linear system independent of any specific correspondence algorithms or optical
flow algorithms for computing the displacement vectors.

The second problem is that the current linear system Eq. 7 assumes the availability
of two static images, as opposed to two video frames. Video frames are typically stored
in compressed data based on a specific video format such as MPEG, unless they are ex-
plicitly decompressed to become static images. Therefore, it is also expected to have a
linear system directly based on the compressed video data. Below we propose a solu-
tion to avoiding the two problems leading to the LSCA method based on the MPEG
standard®.

Recall Egs. 1 and 4. Instead of applying them to a set of feature points in a frame,
we now apply them to every points of a region of m points in the frame. Thus, we have

m m
> pi=AR-I))_ P;+mAT (10)
i=1 =1
m m
Zp,.=AZP,-+mt (11)
i=1 i=1
Define
5= 13 p = (@9)
pP=— p; =&Y
m i=1
- 13 T
p= ;;m = (%,7)
_ 1 -
P==Y P, =(X,Y,2)"
m i=1
we obtain _
p=A(R-I)P+ AT (12)

p=AP+t (13)

UIn this report, we only consider MPEG-1 or MPEG-2. However, the principles apply to other compression
standards that might have different structures but the same general motion-vector philosophies.




If we take each MPEG macroblock as such a region, then m becomes a constant (i.e.,
m = 256) over the whole frame. Therefore, we have a similar linear constraint for each
macroblock of a frame:

T+07+az+Bj+v=0 (14)

and consequently, given n macroblocks, we can build a similar linear system
Dy = Embm (15)
with a similar theorem:

Theorem 3.2 Given n macroblocks in an MPEG video frame represented in the linear system
of Eq. 15, if there is no independent motion with any of these macroblocks, then the linear system
is consistent.

In the MPEG compression standard, for each macroblock in a frame, if this mac-
roblock is inter-coded, there is a motion vector available. We approximate p with the
motion vector, and p is the center of the macroblock. Since the macroblock informa-
tion (including the motion vector and the center coordinates) can be easily obtained
directly from a compressed MPEG video stream, we have a linear system Eq. 15 that
can directly work on the MPEG compressed data without having to depend on a spe-
cific algorithm to compute the correspondence or optical flow between the two frames,
simultaneously eliminating the two potential problems mentioned above with Eq. 7. If
the macroblock is intra-coded, we just exclude this macroblock from the linear system
of Eq. 15. If the frame is an I-frame in which all the macroblocks are intra-coded, we can
obtain the motion vector of a macroblock by predicting it from the one in the previous
B-frame.

While the displacement vector may be approximated by the motion vector of a mac-
roblock, this may create another problem, i.e., how accurate this approximation is. It
is known [43] that the motion vector estimation in MPEG is subject to errors, and how
large the errors are depends on the specific implementation of the motion vector es-
timation algorithm under the MPEG standard [8]. The theoretic relationship between
the errors in motion vector estimation in MPEG and the detection accuracy is shown in
Section 3.3. Here we provide a tentative solution to this problem based on the normal
flow computation to attempt to lower the potential errors for the motion estimation.
Research shows [47, 39, 27] that the normal flow is more reliable than the standard op-
tical flow. Assuming that the intensity function of a frame is I{z, y), the normal flow n,,
at the point p = (z,y)7 is defined as the dot product between the normalized gradient
of the point p and the displacement vector at this point:

Ny = o + 7 (16)

Since in the compressed MPEG video stream we only have the motion vectors for
each macroblocks as opposed to each points, we must extend this point-based normal
flow definition to the macroblock based one. Let VI(p) be the normalized gradient of
the intensity function I at a point p. Given a macroblock M, the macroblock gradient
VI(M) is defined as:

m

VI(M) = =3 VI(p) 7)

i=1




where p; is a point of M, and m is the total number of points in M. In MPEG, m = 256.

Now the question is how to estimate the gradient of a macroblock without decom-
pressing the video data. Lee et al [26] showed a method of estimating the approximated
gradient for a whole block only using a few low frequency AC coefficients of the DCT
of the block in MPEG. This is essentially to approximate the original DCT AC coeffi-
cients AC,, with the corresponding “continuous” versions ACyy:

ACyy = ACy, = C(u)C(v) /08 /08 cos%cos%](m,y)dxdy (18)
where C(u) and C(v) are the scale factors of the standard DCT definition [43]. Given
a few limited lower frequency terms of ACy,, we can explicitly solve for the block
edge orientation, the block edge offset, and the block edge strength [26]. The question,
however, is how many such lower AC coefficients would suffice an accurate estimate
of the block gradient. Reported research [26] shows that in order to estimate the block
gradient, only the five lowest frequency AC coefficients are necessary to recover the
information (i.e., ACq;, AC1q, AC2, AC11, AC2). Consequently, the majority of the AC
coefficients as well as the DC component are not required. This shows that it is still not
necessary to decompress the video stream in order to recover the block gradient; the
method can directly work on the compressed MPEG stream to extract the small piece
of the “essential” information (i.e., the motion vector of a macroblock and the five low
frequency AC components of a block) without having to decompress the video stream.
Fig. 2(a) - (c) shows examples of the “block” edges detected based on estimating the
block gradients using the five lowest AC components of the blocks. Note that due to the
background noise (e.g., the different background objects in Fig. 2 (a) and (b)), “edge”
information is indicated through the block gradient detection; when the background is
relatively noise-free (e.g., in Fig. 2 (c)), there is no such “edge” information.

Once we have the block gradient vectors available for all the four blocks of a mac-
roblock, the macroblock gradient is computed by averaging the four block gradient
vectors based on the definition. Finally, the normal flow value of a macroblock, n(M),
is defined similar to that of a point in Eq. 16 by taking the dot product between the

macroblock gradient vector, VI(M), and the motion vector of this macroblock, V(M)
n(M) = VI(M) - V(M) (19)

When we have the normal flow value computed for a macroblock, we can make
a decision regarding whether this macroblock should be incorporated into the linear
system of Eq. 15. The rationale [47] is that if the normal flow is low, the motion vector
is probably not accurately estimated; consequently this macroblock should be rejected
from incorporating into Eq. 15.

Now the LSCA algorithm is summarized as follows, which takes four parameters:
the normal flow threshold T, the scan window width r, the R statistic threshold T,
and the defined minimum number of frames T’ of a segment that contains independent
motion.

Scan an input video stream in compressed MPEG
For every pair of neighboring frames
Start to build up the linear system Eq. 15
For each macroblock M of the first frame [ of the pair

10




Figure 2: Examples of using the five lowest DCT AC coefficients in each block to estimate
the gradient information, where the left column shows the frame samples while the right
column shows the corresponding block edge maps. Note that no decompression is per-
formed.
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Estimate the normal flow n(M) of M
Ifn(M)>T,
Incorporate M into Eq. 15 based on Eq. 14

Compute R of the linear system Eq. 15
Compute the median filtered R over a window of r frames
IfR-1>Tg

Label [ as a frame with no independent motion
Else, label { as a frame with independent motion
Any independent motion segment with frame number > T is retrieved

Note that LSCA is based on the assumption of constant camera model in terms
of the sensor parameters A and ¢. In real applications, it is possible that the camera
internal parameters change during the surveillance (e.g., zoom in/out). Since LSCA
only focuses on two neighboring frames, given the current video frame rate (about
30 frames/second), if the change is slow, we can ignore the change and still use the
algorithm to compute the R statistic between the two frames; if the change is fast, the
computed R value between the two frames may be wrong, which will lead to a false
positive or negative. However, in this case, there will be only a few frames subject to
the error of R values, and they will be shown as outliers and will then typically be
filtered out by LSCA.

Based on the analysis given above, it is clear that as a novel unsupervised video seg-
mentation tool for independent motion detection, LSCA has the following distinctive
advantages as compared with the existing methods in the literature:

¢ No camera calibration is required or necessary in order to apply LSCA, i.e., the
uncalibrated image coordinates directly from the video frame may be used with-
out having to convert them into the calibrated coordinates.

e The statistics computed in LSCA are stable due to the low condition number in
the linear system, resulting in avoiding the unstable matrix computation problem
of high condition numbers typically existing in many computer vision and image
understanding techniques.

e LSCA is able to detect independent motion only based on two frames, as opposed
to some techniques in the literature requiring more than two frames (e.g., the
methods by Irani and Anandan [19] and by Sawhney et al [38]). Those that require
more than two frames typically attempt to do spatial identification of the specific
independently moving objects in the frames.

e LSCA is very fast. The current prototype with even-not-optimized-yet implemen-
tation runs at 35 frames/second rate for a typical frame resolution of 240 x 350 of
compressed MPEG videos on a Pentium III 800 MHz Windows2000 system with
512 MB memory.

e LSCA directly works on the compressed data without having to decompress the
data first.

e LSCA only requires one camera video stream for robust detection as opposed
to some techniques in the literature requiring the stereo video streams (e.g., the
techniques proposed by Argyros et al [5, 3, 4, 6] and by Lourakis et al [27]).
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3.3 Theoretic Detection Bound of LSCA Method

In this subsection we give a theoretic bound on independent motion detection using
LSCA w.r.t. the MPEG motion vector errors. To simplify the notations, in the rest of
the report, we will drop the subscript m for the matrices Dy, D, b, and the vectors
€m, b in Eq. 15, and will drop the overline for the coordinates and the motion vector
components for the center of a macroblock, ie., p = (Z, )T = p = (z,y)7, and
p= (297 =p= (79"

Define )

p=p+0p= (597 +(8s,09)"

as the motion vector given in the MPEG streams, which is assumed here to be decom-
posed into the true motion vector p = (g, )T and the error Ap = (A, Ag)T. Since we
assume that the motion vector estimation error in the MPEG streams is the only error
source contributing to the detection error in the LSCA approach, we have

(D+AD)=b+Ab (20)
where
1 21 1 1 Ay 0 0 0 —I LAY A1
D= .. AD = b= Ab =
Yn Tn Yn 1 Ay, 0 0 0 —Zn AV

Define the augmented matrix
Yooy 1 -4

Yn Tn Yn 1 —Tn

and further define
H' =H+ AH = (D + AD)|(b + Ab)

resulting in
Ay 0 0 0 —Ay
AH =
Ay, 0 0 0 A,

We introduce the following notations. For a matrix B, we denote X;(B) as the ith
eigenvalue of the matrix B, and o;(B) as the ith singular value of the matrix B. In
particular, we denote A (B) as the smallest eigenvalue of the matrix B, and opin(B)
as the smallest singular value of the matrix B. We assume that for a matrix B, all the
eigenvalues or the singular values are sorted from the largest to the smallest.

From the perturbation theory of singular value decomposition [16], we have

omin(H + AH) = 0min(H)|| < o1(AH) 1)

lomin (D + AD) - omin(D)|| < o1(AD) (22)

From the relationship between the eigenvalues and the singular values of the corre-
sponding matrices [16], we have

o}(AH) = M (AHTAH) (23)
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o}(AD) = \(ADTAD) (24)

By explicitly solving for the eigenvalues of the matrices AHT AH and ADTAD, we
have

Py Ay + X A%+ \/ LAY - Ty A22)? + 4T AZiAY;)?
g1 (AH) = 2
(25)

_ T e (26)
i=1

Based on the definition in Eq. 9, now we have

AR = :l-l z; Amz + Z =1 TA?J'L
_ n & B D Umm(H) H Umm(D)A .
= =l @ i

D rrun o H
s Lmﬁf__gym(ﬂ)—;)wf Yomin(D) . (27)

— = ( b o'mzn(ﬁn!A + a'mrn! 2Ay'1)
:'mmg 2 a'mmf )A s+ O'mmg 2Ayz)

mzn

Based on the calculus theory, let

= 0 min D . 0 min
13 2om ) g, 4 222 D) i) foin (D + AD) - (D) 29

and

15l g Ot B A o o (B + O 0B 29)

Consequently, from Eq. 27, we have

IAR] < NI =2gn ny(2emin D) pg, o 0menD) £

(30)
+uﬂm%;,2 my (2zminlED) n g OminlH) pgy

Since omin(D) > 0,0min(H) > 0, from Egs. 21, 22, 25, 26, 28, and 29, we have the
theoretic error bound for R:

n ‘-A2

< 2:’:1 Agi

IAR| < 1——;7-0 —=
amm( ) \/E.- 22+ Ast+ (T Ay, S A D&Y
miﬂ (31)

Experimental data have shown that this error bound is consistent very well with
the error distributions in the data.
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4 Frame Alignment

Frame alignment has many immediate applications, including video mosaicking, frame
stabilization, spatial domain object tracking, etc. Since frame alignment is another typ-
ical video prostanding problem, we show that this problem may also be solved using
the holistic, in-compression approach as a tool for video summarization (e.g., through
the mosaicking application to have immediate access to the “background” scene with-
out playing the video). The specific theory and the related method for frame alignment
developed here is called In-Compression Matching (ICM). Below we first discuss the
theory, and then introduce the ICM method.

As with LSCA, here we will make use of the motion vectors in the MPEG-compressed
video. In a later subsection we discuss the details of dealing with I-, P-, and B-frames
in the sequence. For the moment, however, we will suppose that for the current frame,
there are n motion vectors received; note n may vary from frame to frame due to an
encoder’s selecting macroblocks to be coded in intra mode; these motion vectors will
be used to align the current frame to the reference frame. Let the i** motion vector
be vi = (%;,¥:)T. It is assumed here that v; describes the motion undergone by the
pixel located at the center of the macroblock, denoted as (z;, ;)T such that the current
macroblock is centered at position (&, §:)7 = (zi + %i, yi + 7;)T in the reference frame.

We use an affine transformation in two dimensions to represent the global motion

between tWO frameS,
ﬁ Q aig a t
% 11 1 13

[ y’i ] [ a1 Q@22 0423 ] ]1 ’ ( )

which contains six degrees of freedom. The four- and two-parameter models discussed
in this report have the same general form as the affine model above, but with varying
degrees of freedom removed. A more general eight-parameter projective transform
could also be considered, but the model’s non-linear solution is avoided in favor of
the more efficient performance of the models discussed in this section. Efficient im-
plementation of estimation of the eight-parameter projective model [29, 36] has been
addressed elsewhere, but is not investigated here.

4.1 Six-Parameter Model

A weighted least-squares (LS) formulation is first introduced for fitting the received
MPEG motion vectors to the affine transform. Inclusion of the weights in the formula-
tion allows an implementation to include additional information about the accuracy of
some motion vectors relative to others. Appropriate weighting of the motion vectors
can help to prevent inaccuracies of the motion vectors from corrupting the estimated
motion.

The weighted LS formulation for the affine model minimizes

n n
3 wilanzi + a1oyi + a13 — #:)2 + Y wi(en i + azoyi + azs — i), (33)

i=1 i=1
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which is accomplished by solving the following two equations:?

[ Ywiz?  Twizyi Y wimi an > wiZiT; :

Swiziyi Lwiy; L wil ap | = | Dwidwyi |, (34)
| Ywizi  Twiyi Ywi || 13 ] | YCwid; |

Swig? L wiTiy Y wiT a1 > Wi

SwiTiyi Lwiy: L wili a2 | = | 1wy |- (35)
| Ywizi Ywiyi Lwi | | 623 | Zwil

The square matrix on the left of the above two equations is easily inverted, yielding the
weighted least-squares estimate of the six affine parameters.

Extreme outliers in the MPEG motion vectors can corrupt the LS model fitting. A
considerably more robust optimization minimizes the weighted least absolute value
(LAV) error criterion,

3" wilanzi + arowi + a13 — &i| + Y wilagizi + azny; + azs — Gil- (36)

Such an error criterion is well-known to be more robust to the effects of outliers in one’s
data. Here, the LAV estimate is computed using iteratively reweighted least squares
(IRLS), which makes use of the weighted LS solution shown previously. Since the two
terms in Eq. 36 can be minimized independently, we describe the procedure for mini-
mization of the z error term; minimization of the other term in performed analogously.
The IRLS solution starts with an initial estimate of the affine parameters, taken here as
the standard weighted least-squares estimate. The absolute value of the residual error
is then computed, and a new weight is defined as

'wi

— (37)
l“n z; + 12 yz (J) — I

where the superscript (j) denotes values for the j** iteration of the algorithm. This
weight is then used in place of w; to compute a new weighted least squares estimate.
This process repeats iteratively until a convergence criterion is met, taken here as

4 (5-1)
DMl Ml i <e (38)
Y]

where r( 9) is the residual error term in the denominator of Eq. 37, and ¢ is a threshold.
Convergence has been observed to occur in two to six iterations.

4.2 Four-Parameter Model

It is well-known that using a model with more degrees of freedom than is strictly nec-
essary can lead to the model simply fitting the noise more accurately. In some scenarios,
the six parameters of the affine transform may be more than is necessary to describe the
motion accurately, and the additional robustness of a reduced-parameter model to mo-
tion vector inaccuracies can make a lower-order model a better choice than the affine
model. This subsection considers the case of a four-parameter model.

2For notational convenience the indices for the summation have been removed, and are implicitly meant
to be over i from 1 to n.
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When one applies rotation, followed by zoom, followed by translation, the resulting
transformation appears as

i a -b d i
Li | _ 2 |, (39)
HEEIE

where the parameters can be interpreted such that @ = va? + b?* is the zoom, § =
tan~! & is the angle of rotation, and d; and d,, are the translational shifts in the z and y
directions. The weighted LS solution for the four-parameter model minimizes

> wi [(a: — byi + dg — 5)? + (boi + ayi + dy — %] (40)

whose minimum is found by solving

Swi(z?+y?) 0 D WiTy Y Wiy a > wi(zidi + yidi)
0 Ywilz? +9) —-Twiy T wizi b | | Ywil—yids + i)
Wi — 2 Wiy Ywi 0 de | | Xwid
2 Wiy 2 WiT; 0 2w dy 2. Wil
(41)
The inverse of the above matrix is easily computed as
—233 0 213 214
1 I 0 _Zaa _Z14 as | (42)
—211233 + 213 + 214 213 —Z14 21 0
214 213 0 —2zn1

where z;; corresponds to the (i, j)* element of the square matrix in Eq. 41.

As was the case for the affine model, a LAV estimate can be computed for the four-
parameter model. The procedure is the same as for the affine model, but the weighting
term from Eq. 37 is replaced here by

200 _ I 1)

where r{?) and r{!) are the i z and y residual error terms in Eq. 40 for the j*" iteration.

1

43)

4.3 Two-Parameter Model

Just as the four-parameter model may often be more appropriate than the six-parameter
model, at times the two-parameter model may be more appropriate than the higher-
order models. The two-parameter model of this subsection is extremely robust to inac-
curacies in MPEG motion vectors, and is the preferred method when the global motion
is well-approximated by simple translational shifts.

The two parameter model includes only the two translational parameters d; and dy,

] [10d]|™
HEEE v o
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Use of the two-parameter model is appropriate when the global motion is approxi-
mately translational, for example when one has aerial motion imagery taken with a
lookpoint straight down. Some methods have used a two-parameter motion model
as an approximation to camera pan and tilt, and under some circumstances when it
may not be strictly appropriate, the two-parameter model may still be sufficiently ac-
curate for some particular applications. The two-parameter model is also more robust
to errors in observed MPEG motion vectors.

Following the formulation of the four- and six-parameter cases above, one could
easily derive a weighted LS solution for the two-parameter case. However, direct appli-
cation of the LAV estimator is straightforward for the two-parameter case. Minimizing
the weighted LAV criterion

> wilwi + dp — &l + Y wilyi + dy — Gl (45)

leads to estimates for d, and d,, being the weighted medians of the z and y components
of the received motion vectors.

Note that the weighted median filter can be implemented very efficiently here be-
cause sorting the motion vectors is unnecessary—since the MPEG motion vectors are
given at half-pixel precision within a range of limited size [20], the cumulative distri-
bution function (cdf) of the weighted motion vectors can be easily computed, with the
median value taken as the point of the cdf at which half the weighted data are above
that point and half the weighted data are below. Calculating the median of these po-
tentially large numbers of motion vectors can thus be done in O(n) complexity.

44 ICM Method

Although inclusion of all frames for frame alignments from an MPEG stream would
be straightforward, the application described here (mosaics) primarily uses P-frames;
making use of motion vectors from B-frames can be accomplished analogously to the
case of P-frames. Motion vectors for each P-frame are used to estimate parameters of a
global motion model between the P-frame and its reference frame; these global motions
are calculated throughout the sequence. When using only P-frames there is a temporal
discontinuity in the motion estimates when an I-frame occurs. This discontinuity is
easily remedied if there is at least one B-frame at the end of the previous GOP that
uses both forward and backward prediction—the global motion from the B-frame to
the P-frame can be computed and used in conjunction with the global motion from
the B-frame to the I-frame to form an estimate of the motion from the I-frame to the
previous P-frame. If such a B-frame is unavailable, we have one of two options: we can
do some form of interpolation of the available motion fields from either temporal side
of the I-frame, or we can default to a spatial-domain frame registration algorithm.

Since in MPEG there is a motion vector available for each macroblock if this mac-
roblock is inter-coded, we can directly make use of this motion vector as an approxima-
tion to the displacement vector for this macroblock. If the macroblock is intra-coded,
there are two cases. We have already discussed the strategy to handle the case when the
macroblock comes from an I-frame. If the macroblock is not in an I-frame, we treat the
weight for the displacement vector of this macroblock as 0, and thus the macroblock is
excluded in the consideration of the frame alignment.
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In Section 3.2 we have shown that we can directly obtain the block gradient infor-
mation from the compressed domain. We can take the same approach to estimating the
macroblock gradient information in determining the weights in generating the align-
ment in the ICM method based on the theory discussed above: macroblocks that have
more edge activity, as indicated by the gradient, can be weighted more heavily in the
formulation than macroblocks with low edge activity whose motion information is less
likely to be accurate.

4.5 Example Use of ICM: Mosaics

As mentioned previously frame alignment has many potential uses, but here we focus
on the formation of mosaics. The algorithm presented here begins by placing a user-
specified reference frame on the blank mosaic canvas, and then proceeds by adding
strips of new information provided by other frames in the sequence. For time- and
memory-critical applications, the first frame of the sequence can be considered the ref-
erence frame, with new information from subsequent frames being added over the
frames in the stream. For the more general case, an arbitrary frame can be used as
the reference, with the alignment formed by adding the new information provided by
frames both before and after the reference frame. For many sequences, various choices
of reference frames can have dramatic effects on the final mosaic; some examples are
given in Section 5.

4.6 Using the I-Frames Only

The above ICM and mosaicking theory assumes that we use both the I- and P-frames
in a video sequence. In fact, if we intend to save further time in computation, we can
apply the same ICM theory to generating a mosaic using only the I-frames. The idea
is that we estimate the global motions for each I-frame through the composition of all
the global motions from the previous P-frames. This strategy significantly saves the
computation time for generating a mosaic. Experimental data show that if the origi-
nal video sequence motion vectors are of reasonably good quality, the quality of the
generated frame alignment is still acceptable. This is particularly attractive for the ap-
plication scenarios that motivate this project, in which we only need to let the users
have a quick browse about the content of the video without having to have a high
accuracy of the alignment.

5 Experimental Evaluations

In this section, we first report a preliminary, simulation based analysis on estimating
the detection false positives and false negatives, as well as the detectability bounds
for LSCA. We then present the real data experimental evaluations to demonstrate the
robustness and effectiveness of LSCA. Finally, we present the real data evaluations for
ICM.
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5.1 Simulation Analysis on LSCA Method

Both analyses on false positives and false negatives are the sensitivity analysis for LSCA.
This may be achieved by testing the stability of the statistic R of LSCA under different
levels of noise through simulation. As a preliminary analysis, we design a simulation
scenario as follows.

10 3D points are randomly generated in a Euclidean world coordinate system. A
video camera is first located at an arbitrary position in this world coordinate system.
The 10 points are projected to the image plane of the camera based on the 3D to 2D
affine transform to generate the image coordinates in this frame. Then the camera
is moved to another position, and the 10 3D points are projected to the image plane
again to generate the image coordinates in the second frame. The image displacement
vectors are immediately obtained from the image coordinates of the two frames. The
displacement vectors and the image coordinates in the first frame are then corrupted
by different levels of randomly generated Gaussian noise, parameterized by different
deviations in terms of the number of pixels. The image points in the two frames are
distributed in an area of 100 pixels by 120 pixels. Thus, 1 pixel deviation of Gaussian
noise approximately corresponds to 1% of the whole effective image dimension.

The corrupted image coordinates and the displacement vectors are input into LSCA,
and the R statistic is computed for each noise level. Since there is no independent mo-
tion involved in this scenario, the R value should be high. Under the corruption of
the noise, however, the R value degrades as the noise level increases. Fig. 3(a) shows
the logarithm of the R values averaged over 1000 runs with different seeds under each
Gaussian noise level parameterized by the standard deviation in terms of the number
of pixels.

From Fig. 3(a), it is clear that false positives of independent motion detection may
occur when the noise level increases. From the Figure, if the noise level is controlled un-
der 2 pixels, the R value always stabilizes somewhere statistically significantly higher
than 1 (above 2). Note that considering the effective image dimension as 100 by 120, 2
~ pixels’ noise is significantly large in practice. This shows that LSCA is very robust in
rejecting false positives in independent motion detection.

The simulation scenario continues when a point of independent motion is added
into the original 10 point set. This time the R value always stays at 1 regardless of what
level the noise is, indicating LSCA is effective in detecting independent motion.

While false positives and false negatives are the probabilities describing an event of
a detection failure of the LSCA, detectability is an issue of how significant an indepen-
dent motion should be such that LSCA is able to detect it. Detectability is a different but
a related concept, which is defined as the smallest independent motion that LSCA can
detect. Again, this may be determined through simulation analysis.

Using the same simulation scenario above, based on the original 10 background
points, we add the 11th point that is subject to an independent motion, in addition to the
camera motion. In order to separate contributions from different independent motion
components to the detectability of LSCA, we apply LSCA to independent translations
of this point along X, Y, Z axes, and to independent rotations of this point about X, Y,
Z axes, respectively, under different levels of Gaussian noise. Fig. 3(b) to (g) show the
six scenarios of the simulation.

A qualitative examination of these simulation results reveals that the performance
of LSCA appears less sensitive to the independent motion related to the Z axis (rotation
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about the axis or translation along the axis) than to the independent motion related to
the other axes; quantitatively, based on this simulation, the detectability is related to the
noise levels, and a higher noise level increases detectability. The reason is that a higher
level of noise increases the false positives, which help increase detectability. Take the
noise level of 1.5 pixel deviation for example. If the threshold value is set as 2 for R,
the detectability is under 1 unit for all the translations, and under 0.1 degree for all the
rotations. If the threshold of R decreases to 1.5, the detectability for translations along
X, Y, and Z axes is above 8, 10, and 20 units, respectively, for rotations about X, Y, and
Z axes is above 0.4, 0.8, and 3.0 degrees, respectively. Note that these parameters are
obtained from this specific set of simulation only. However, since in the simulation data
we know the ground truth of the displacement vectors, we observe that the R statistic
errors propagated from the displacement vector errors confirm well with the theoretic
bound in Eq. 31.

5.2 Real Data Evaluations on LSCA Method

We have implemented the LSCA as a stand alone version in a Windows2000 platform
with Pentium III 800 MHz CPU and 512 MB memory. Fig. 4(a) and (b) show two
surveillance video clips for the two scenarios with and without independent motion,
and Fig. 4(c) and (d) show the R statistics computed at every frames for the two shots
from two surveillance videos in Fig. 4(a) and (b), respectively. The statistics are obvi-
ous to tell whether and where there is independent motion in the video. The first shot
containing 264 frames describes an independent motion of an airplane landing to its
destination. The mean of the R statistics is 1.012 and the deviation is 0.0083 over the
264 frames. The second shot containing 1024 frames surveys an area of ground terrain
with no independent motion. The mean of the R statistics is 1.389 and the deviation is
0.169 over the 1024 frames.

In order to give a meaningful evaluation, we make an assumption that a reliable
independent motion shot should last at least 30 frames (i.e., Ty = 30), which corre-
sponds at least about one second presence of independent motion in the video. This
assumption ensures that any sporadic detection false positives due to motion estima-
tion outliers and/or sensor parameter changes will be removed. Since LSCA performs
frame-based independent motion detection, it is reasonable to define the detection rate
as the percentage of the number of truthed independent motion frames detected by
LSCA of the total number of detected independent motion frames, and to define the
detection false alarm as the percentage of the number of falsely detected independent
motion frames reported by LSCA of the total number of truthed independent motion
frames in a video. Based on these definitions, we have run LSCA on a video testbed
which collects different shots of surveillance video of total 10602 frames. The overall
detection rate is 94.9% and the false alarm is 3.07%.

The above systematic evaluation is based on a threshold value of the R statistic in
LSCA, which is 1.2. Let us use this threshold as the baseline threshold, and call it Tg. In
order to investigate the LSCA performance with respect to the varying threshold, we
define a variable r¢ as the relative increase:

_Tr-Tp
T Tp-1
where Ty is the varying threshold for the R statistic. We take one of the shots in the
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Figure 3: (a) Logarithm of the R statistic of LSCA under different Gaussian noise levels
when no independent motion involved. (b)-(d) Detectabilities of LSCA w.r.t. independent
translations along X, Y, and Z axes, respectively. (e)-(g) Detectabilities of LSCA w.rt.
independent rotations about X, Y, and Z axes, respectively.

22




R Statistic vs. Frama Number for rames 887 thvough 1150

35

25

R Statistic
Do

-7 o7 ur 1037 1087 ny
Frame Number

(d)

R Statistic vs Frame Number for Frames 2027 through 3050

» “
[T VI

R Statistic
&

~ |
Moo Wl e

o
o

°

02 227 2427 w27 M7 3027
Frame Number
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computed for the shot in (a) (264 frames) (d) The R statistics computed for the shot in (b)
(1024 frames).
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Figure 5: LSCA performance degrades gracefully when the rr increases.

whole evaluation video data collection and apply different relative increases w.r.t. the
baseline threshold Ty to observe the performance degradation. Fig. 5 shows that the
LSCA performance degrades gracefully when the relative increase rr increases sub-
stantially.

To show that LSCA is not only valid for the typical surveillance scenario where the
camera is far away from the scene, but also could be valid for the scenario where the
camera is relatively close to the scene, Fig. 6 demonstrates an experimental result of
LSCA in which we take a movie with an independent motion very close to the camera,
and split the spatial domain into the left and the right halves such that the left video
does not contain independent motion while the right one does. The result clearly shows
that LSCA is robust even under the situation where the camera is close to the scene.

Since LSCA essentially just needs to compute the R value for each frame, and since
in each frame there is typically a very limited number of macroblocks, the complexity
of LSCA is very low. The current prototype of LSCA scans a compressed MPEG video
with a typical frame resolution of 240 by 350 at the speed of 35 frames/second under
the current platform, which is faster than real-time. Note that this implementation is
just for proof of the concept and the code has not been optimized yet. This shows that
LSCA holds a great promise and vitality in the future applications in both proposed
scenarios: real time surveillance data scanning equipped with the sensors and efficient
data mining for an archived database of surveillance video.

5.3 Real Data Evaluation on ICM Method

The ICM method is implemented in a platform of Pentium IV 1.6GHz CPU with 512MB
memory running Windows XP. Fig. 7(a) and Fig. 8(a) show examples of the mosaics
for two shots with 128 frames each using ICM frame alignment method. In order to
demonstrate the strength of the ICM method, we have also implemented a method that
uses the same frame alignment models as ICM uses but actually decodes all the frames
from the video for the model-fitting. In other words, this method decodes the MPEG
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stream data for generating the frame alignment instead of directly generating the frame
alignment in the compressed domain. After the decoding, the same motion vectors
available in the data is used for the model-fitting, and the Sobel edge operator is used
to obtain the gradient information for each pixel in the model-fitting in this method.
For the reference purpose, we call this method as DM. Fig. 7(b) and Fig. 8(b) show the
mosaicking results generated using DM. Visual examination between Fig. 7 and Fig. 8
indicates that there is little noticeable difference between ICM and DM regarding the
frame alignment quality generated by the two methods. This then demonstrates that
weighting using compressed-domain information gives comparable results to using
weights derived from actual spatial-domain information.

On the other hand, using ICM can substantially save time due to the holistic, in-
compression approach. For example, Fig. 7(a) is generated using ICM for a video shot
of 384 frames with 352 x 240 frame resolution, and it takes 14 seconds using the six-
parameter model, which delivers about 27 frames per second that is close to real-time
at the current platform with the not-optimized-yet code. On the other hand, Fig. 7(b)
is generated using DM for the same video shot, and it takes 30 seconds using the same
six-parameter model. This shows the substantial saving in time for the ICM method,
due to not having to fully decode the frames for alignment.

The accuracy of the generated frame alignments using ICM depends on the quality
of the motion vectors available in the original video data. This is obvious since the
accuracy of the alignment models directly depends on the accuracy of the displace-
ment vectors which are approximated by the motion vectors in ICM; for the subse-
quent frames’ alignment parameters, they are generated in ICM through compositions
through the P-frames from a previous frame’s alignments; if there is an error in the
previous frame’s global motion, this error is propagated and accumulated to larger er-
rors for the global motion in the subsequent frames, resulting in worse accuracy for the
alignment quality as the alignment extends to subsequent frames. This can be seen in
Fig. 7(a) and Fig. 8(a), where since the quality of the motion vectors in the video data of
Fig. 8 is better than that of the motion vectors in the video data of Fig. 7, the “accumu-.
lated” errors over the extended mosaics in the latter are more obvious than those in the
former. However, even with the noticeable motion errors, the generated mosaicking
image quality using ICM is still comparable with that generated using DM, such as
Fig. 7(a) and (b). We have evaluated the ICM method using all the 10602 frames video
data we have used in the evaluation of LSCA method, and compared the alignment
results with those generated using the DM method. Visual inspection shows that there
is no or little difference for the generated alignments between the two methods.

Due to the problem of the accumulated error over extended alignment frames, de-
pending on the original quality of the motion vectors, the final visual quality of the
generated mosaics may depend on which reference frame is used for mosaic genera-
tion. In Figs. 7 and 8, we have shown two examples of the generated alignments using
frame 0 and frame 64 as the reference frames, respectively (in (a) and (c)). Since the
quality of the motion vectors in the video shot of Fig. 7 is worse than that of the mo-
tion vectors in the video shot of Fig. 8, the difference between (a) and (c) in Fig. 7 is
larger than that in Fig. 8. However, since the ultimate goal of ICM is to develop the
tool to allow users to have a quick access to the “background” scene of a video shot, as
opposed to developing a tool to generate very-high quality video mosaics, even with
the degraded quality of a mosaic such as that in Fig. 7(c), users would still be able to
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view and then summarize the content of the video data; it is not necessary, nor is our
intention, to generate the best-possible visual quality in mosaics for the applications
we are addressing.

To show that the quality of ICM only using the I-frames, we have run the I-frames
only mode of ICM for a sequence of 128 I-frames (corresponding to a sequence of 1536
actual frames) to generate the alignments using the two-parameters and six-parameters
models, respectively. The results are shown in Fig. 9(a) and (b). These results indicate
that if the original data quality is reasonably good, it is sufficient to only use the I-
frames to generate the mosaic with acceptable quality. In this example, it has only
taken a few seconds to generate these alignments only using the I-frames, which shows
that we can further save the computation time to just use the I-frames to generate the
mosaics using ICM. To further show the time gain quantitatively, we have run the
same video sequence with the same models (e.g., the six-parameters model) for both
scenarios of using P- and I-frames and using I-frames only, and have recorded the time
difference, as shown in Fig. 10. This figure shows that with more frames involved in
a sequence for generating an alignment, more time may be saved if only using the
I-frames.

6 Conclusions

This project focuses on developing theory and techniques for large scale surveillance
video data summarization and unsupervised segmentation of video streams regarding
whether there is a presence of independent motion in the streams. We propose a holis-
tic, in-compression approach to efficient video prostanding. By efficient, we mean that
the processing speed is close to or even faster than real-time in “normal” platforms (we
do not assume using special hardware or any parallel machines) while still maintain-
ing the comparable quality with the state-of-the-art methods. By prostanding, we mean
to aim at those tasks that are between the traditional video processing and traditional
video understanding. We target surveillance applications. Specifically, we focus on
two prostanding tasks: independent motion detection and frame alignment. Solutions
developed in the two prostanding tasks provide complementary roles in facilitating
efficient browsing of a large collection of surveillance video: the independent motion
detection tool allows identifying the shot with the “foreground” target motion with-
out waiting for playing the whole collection of video before identifying the shots; the
frame alignment tool allows accessing to the “background” scene immediately through
applications such as mosaicking without waiting for playing the whole collection of
the video. For the independent motion detection task, we have developed the theory
and the technique called LSCA. For the frame alignment task, we have developed the
theory and the technique called ICM. Both techniques are representatives of the holis-
tic, in-compression approach. Theoretical and experimental analyses show that both
methods work robustly in solving their problems, and thus demonstrate and validate
the holistic, in-compression approach in solving for video prostanding problems.
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Figure 6: (a) A frame of a movie (100 frames) (b) The R statistics for the left halves of the
video (with no independent motion) (c) The R statistics for the right halves of the video
(with independent motion).
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Figure 7: One example of mosaicking a 128 frames shot (a) Generated mosaicking image
using the ICM frame alignment method with frame 0 as the reference frame (b) Generated
mosaicking image using the DM frame alignment method with frame 0 as the reference
frame (c) Generated mosaicking image using the ICM frame alignment method with frame
64 as the reference frame.
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Figure 8 Another example of mosaicking a 128 frames shot (a) Generated mosaicking
image using the ICM frame alignment method with frame 0 as the reference frame (b)
Generated mosaicking image using the DM frame alignment method with frame 0 as the
reference frame (c) Generated mosaicking image using the ICM frame alignment method
with frame 64 as the reference frame.
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